Diesel Engine Power for
Microwave Relay Stations
by R.A.Ford
A.M. Inst. B.E.

Index.

Chapter One	The Application of Diesel Fower
Chapter Two	The Diesel Engine and Relevart Accessories
Chapter Three \quad The No-Break Set	
Chanter Four	Engine Room Design
Chapter Five	Alternative Forms of Pover
Acknowledgements, Bibliography, Anpendix and Index.	

In the early $1930^{\prime} \mathrm{s}$ progressive manufacturers of radio communications equipment were beginnirg to explore the possibilities and problems of using the higher frequency ranges to provide a system of transmitting and receiving messages. Their work evolved into a complete new scierce from which hes grown the industry of Microwave radio.

A microwave radio n ftwork today is en extremely complex system thet carries not only voice communications, but teleprinter circuits, television charnels and computor data. On a small scale, it may serve the demands of an operator such as an oil company or railway system - on a larger scale, it may serve a whole nation and tie in with a great international and world wide system.

Intrinsically, the distence over which a high frequency radio signel mey be transmitted and received is limited normally to a line of sight path with an average distance of about 45 miles. In areas where the distance between two terminal stations is too great to fall within this limitation a repeater station is installed to provide an efficient path.

Prequently, these repeater stations have to be situated in remote isolated sites where no power supply is available and the need arises to provide a small self-contained and efficient
generating stetion. These prime power sources, by virtue of their very existence, are required to be reliable and able to operate unattended for extended periods of time.

Hend in hand with the ever increasing complexity and sophistication of the modern radio relay station has gone the demand for more reliable and efficient methods of providing electrical energy.

Chepter One.

THE APPLICATION OF DIBSEL POWER.

The importance of eny telecommunicetions system is such that due consideration must be given to every aspect of its component parts, not the least of which is an efficient and reliable source of electrical power. The project engineer asked to design equipment that is to be an integral part of a telecommunications network has an important function to perform in providing this power and will require considerable information on which to base his propossl. The radio engineer, in his turn, is obliged to provide as much information as he hes at his disposal and this should be at all times both specific and accurate.

Let us consider a simple brief that cells for power equipment for a single radio station. The project engineer will reauire irformation in detail on es meny of the following aspects as possible:-

1. Geographic location including height above sea level and relative humidity. Accessibility of the proposed site and any restricting factors in regard to weight that may be transported.
2. Ambient temperature at the site.
3. Power requirements and type of load, permissable tolerances of Voltage, Frequency, Cyclic Variation and Waveform. Is the equipment to be Standby to mains or prime power source? Is no-break power required? Is any form of electrical power available at the site - how relieble is it?
4. Is the estimeted loading of the equipment likely to be increased?
5. Is an existing building to be used - is an engine room design required? Is the radio equipment situated adjacent to the engine room or is transmission of the electrical energy required?
6. Availability of local fuel and lubricant types? Are any fuel storage facilities available?
7. Is the site to be attended by maintenence personnel? How remote and what is the quality of the staff?
8. Are eny preferences given in regerd to the proposed equipment generally? Are any special facilities such as remote signelling required?
9. Any other relevent facts.

Before we examine in greater detail the various techricel implications of the foregoing we may use the above guidelines to prepare a specific example to assist our understanding of the problems.

The brief then, as presented to the power engineer might arpear in this form:-
" Specificetion for one Standby to Mains Station located in Quito, Ecuador.

The station is to provide standby power for one Microweve Wulti-Chennel VHF stetion.

The stetion is located on 8 hill on the outskirts of the city and accessable by peved road. It is an addition to an existing system where adequate space is available adjoining the radio room. A fuel storage tark of one thousand litres capacity is located on the outside of the building and may be piped into the new installation. The fuel currently in use conforms to BSS 2869; 1957 Cless A. This stetion is attended by fullytreined diesel fitters and electricians.

The incoming meins surply is $120 / 209$ volts three phese four wire at $60 \mathrm{hz} .$, the supply is reliable and free from transients.

The site conditions ere as follows:- Altitude above sea level $10,800 \mathrm{ft} .$, embient temperatures: maximum 38 degrees C. to minimum minus 5 degrees C. , humidity 80^{t}.

As the engine room is situated adjacent to a wooded area, adequate precautions in exhaust spark arresting must be made.

Preference should be given to conform to equipment currently in use on this system to avoid duplication of spare parts. The proposed equipment should include Lister series $H A$ engines
direct coupled to Trensicon generators.
Power requirements: Eight KVA at 8 power factor, 120/208 volts 3 phase 4 wire, 60 Hz .

An electrical control panel should be provided with mechanical and electrical interlocks.

Provision should be made for charging the engine starter batteries and the following alarm functions with remote signalling contacts should be included:- engine fail to start; engine under and overspeed; voltage out of limits; frequency out of limits; oil pressure low and engine temperature high. In addition, en engine over-run circuit should be included to permit the engine to continue to run for an adjustable period of up to fifteen minutes after mains restoration. \quad.

The above example is not too rigidly defined and the power engineer is at liberty to draw on his experience and imagination to design an equipment that will satisfy the various aspects of the brief. During the course of events the specification will be modified and amended as circumstances dictate and last minute changes and additions may be made as late as final testing on the shop floor. A successful project is one in which installation and commissioning are carried out with the minimum of problems and where efficient and trouble-free performance follow. Close liaison, not only between the relevent departments of engineering, but with
the ultimate customer are essential to achieve these ends. Power equipment for telecomminations systems falls into two basic categories, Standby Power and Prime Power. In addition, the refinement of no-break power is called upon where breaks of even a few milli-seconds can not be tolerated. Standby Power is defined as being a supply available to take over the station load in the event of a total or partial Pailure in the prime power - normally the public mains supply. The equipment is arranged to start up automatically when such a failure occurs and, by way of suitable circuitry and contactors, connect itself to the load until the prime supply returns in an acceptable and stabilised form. The control panel for such an equipment would contain voltage and frequency sensing circuits which detect variations in the incoming supply. If these variations fall outside pre-determined limits - say, $2 \frac{1}{2} \%$ of nominal - the main supply contactor would de-energise and disconnect the suprly from the load and at the same time initiate a start circuit to the engine. The engine would be cranked and run up to speed and, if its alarm conditions were normal, the plant contactor would close under the influence of the generator output and connect the plant to the load. A well-maintained diesel alternator set may be expected to reach stabilised generating conditions within six seconds or less. The standby set will now
run and continue to supply the load until, (a) the mains supply returns to within the accepted $11 m i t s$ and is restored to the load with the diesel shutting down after a suitable cooling off and stabilisation period, or (b) until the diesel develops a fault and shuts itself down on an automatic alarm failure circuit. In this condition a total power failure will exist. In situetions where the mains supply is known to be extremely unreliable - and where heavy demands may be made on a single stendby set - an additional engine may be installed for extra security. In this type of dual standby equipment both sets may be arranged to start up when a power failure occurs, the first up to speed and nominal output taking the load and - in conditions of prolonged power failure - subseouently sharing the load at 24 hourly intervels. In this situation one engine would shut down and remain at standby to the other until called upon to supply power either at a scheduled changeover time or when the other shut down under an alarm fault condition. All equipments of this type are arranged to shut down and isolate themselves in the event of certain undegirable conditions developing. These fault conditions may be summarised as follows:Pailure to Start. In the event of an engine failing to start before a predetermined time the start circuit is locked out and indicator lamp illuminated on the panel. Nost modern control circuits provide a refinement that allows the starter three
attempts to engage and crank the engine for about fifteen seconds before isolating and locking out the circuit. Low Oil Pressure. In the event of the oil pressure dropping below an acceptable limit the engine is shut down and locked out of duty. An indicator lamp on the control panel records the condition.

Engine Temperature High. In the event of the engine temperature rising to an undesirable level the engine is shut down and locked out of duty. An indicator lamp on the control panel records the condition.

Engine Over/Underspeed. In the event of over or underspeed the engine will be shut down and locked out of duty. An indicator lamp on the control panel records the condition. Blectrical Paults. Sersing devices connected to the generator output continuelly monitor its voltage and frequency; in addition, an overload trip may be fitted to disconnect the generator from the loed in the event of sustained overload. The operation of any of these fault circuits will result in the engine being shut down and locked out of duty. Relevant indicator lamps will record the condition on the control penel.

The above fault conditions, with the possible exception of engine temperature high, will be instantaneous in action and will shut down the engine immediately the malfunction
occurs. In the case of high temperature where no immediate danger of damage to the engine exists, the equipment may be allowed to run on for a short period to allow a standby set to start up and assume the load. (If the rise in engine temperature is the result of excessive overload this short over-run period may be a definite advantage as it will permit the engine to cool down a little before coming to rest. It should be remembered that cylinder head temperatures rise considerably when a hot engine is stopped and, if excessive, could result in a cylinder head cracking.) Prime Power Equipment. Prime power - or repeater stations embody many of the features discussed above. The engines, generators and ancillary fittings may be very similar, if not identical. It is more usual for standby engines to run at higher speed than repeator engines - the former normally being rated at 1,500 to $1,600 \mathrm{RPM}$, the latter at 1,000 to $1,200 \mathrm{RPM}$ depending on frequency requirements.

A repeater station may contain two or three diesel generator sets, in some isolated cases more, depending upon circumstances. As there is no public mains supply available at these sites one engine is required to run and supply power continuously while the others remain idle until called upon to run (a) in the event of the duty set expiring its duty run
or (b) in the event of the duty set developing a fault.
In a dual repeater station the engines would be arranged to duty cycle for a time clock controlled period which might vary from 24 hours to seven days.

At the end of this period, the time clock would initiate a start to the standby engine end it would be cranked and run up to speed. After a suitable timed period to allow the output to stabilise within acceptable limits the load would be transferred from the duty set. The expiring set would either shut down or run on for a short period. (This run on period serves two functions (i) it remains available to re-assume the loed if the incoming set is unable to carry it, and (ii) it allows for a short cooling period.) When the expiring set comes to rest it will remain on standby until called upon for further duty which - as in (a) and (b) above Will be at the termination of the duty cycle or when the current duty set develops e foult. The sequence of events in a triple or quadruple repeater would follow the same pattern.

As typicel repeater stations are required to run for periods of long duration without attention, they are equipped with special features that ere not epplicable to standby stations. Details of long duration lubricating facilities and auto-transfer fuel tanks will be discussed at length in the next chapter.

When a falt does occur at a repeater site, the sequence of events outlined under stendby power takes place, i.e. the feulty plant shuts down, the load is taken by the next set end the fault recorded by a panel light. In addition, the alarm is relayed through the radio system and the terminal station attendants are immediately aware of it and can take appropriate action.

It is normel to provide additional fault alarm circuits on a repeater stetion and facilities to signal low fuel level will definitely be fitted. Nore sophisticated systems may even cell for an alarm to be signalled when the engine room door is open - others may require indication of when a control switch has been incorrectly set. All slerm indicator systems are useful and help considerably to esse the burden of the control and maintenance staff. However, the project engineer should avoid the pitfalls that accompany an over-complicated and cumbersome system of protection - things have got out of hand when an elarm has to be incorporated to report on another alarm!

No-Break Generating Equipment. It has been seen that in conventional type standby or repeater station genereting equipment a short duration break in the supply circuit occurs when load contactors change from one to another. Further, it
will have been seen thet a break of several seconds occurs when a failure has taken place and an engine has to be started from standby condition to assume the load.

Modern day demends on telecommunications systems are such that even a load contactor break of only a few milliseconds is intolerable and it has become increasingly more necessary to specify some form of no-break equipment as an integral part of the power supply.

No-break power mey be provided in many forms and a chapter dealing with this subject is included. In its simplest form a no-break set may comprise several diesel generator sets rated at less than full station load and each able to continue the supply if one of the others shuts down. Each set would be provided with synchronising facilities and able to rejoin the load circuit without interruption. In this system incoming plants could be brought on to the line and expiring sets shut down with 'no-break' to the essential load. At any given time, two diesel generator sets would be running on full duty cycle with additional sets at rest on standby duty.

Chapter Two.

THE DIESEL ENGINE AND ITS ACCESSORIES.

Before deciding upon a suitable engine the project engineer will consider very thoroughly the use to which it will be put and the environmental conditions under which it will operate. His first consideration however, will be the actual power requirement under site conditions.

Let us consider the requirements of a diesel engine that is to be installed at a height of $3,500 \mathrm{ft}$. above sea level and where the maximum engine room temperature is 115 degrees F.

Using BSS $649 / 1958$ we should derate 3.5\% for every $1,000 \mathrm{ft}$. after the first 500 ft . to obtain a derating figure of 10.5%. Subtract a further 2% for every 10 degrees above 85 degrees F. to obtain minus 6% and give a total derating of 16.5\% An engine rated at 120 horse power would only develop 100 HP located in the above conditions.

Where power requirements are asked for in terms of electrical energy as would generally be the case for a diesel generator set, the calculation should be worked back from the required output in kilowatts or kilo volt amps. Here let us consider the power factor of 0.8 and an efficiency of 87%. The required calculation is:-

$$
\begin{aligned}
& 50 \mathrm{KVi} . \mathrm{x} 0.8 \\
& 40 \mathrm{KW} \text { divide by } .746 \text { equals } 40 \mathrm{KW} . \\
& 53 \mathrm{BHP} \text { equals } 53 \mathrm{BHF} \text {. } \\
& (746 \text { watts equels } 1 \text { horse power) }
\end{aligned}
$$

In the foregoing examples the effect of relative humidity has been ignored. It is, in fact, a difficult thing to assess, but should be considered as it mey well have to be teken into account. Let us assume that a specification quotes a relative humidity of 95% where the temperature veries between 130 and 55 degrees \vec{F}. In prectice, the maximum humidity occurs when the temperature is at its minimum - as the minimum temperature is less than 85 degrees we could, therefore, derate for humidity only. Using a derating factor of 4% for every inch of mercury above 0.6 inches varour pressure the total derating for the above example would $f e l l$ between 3 and $4 \kappa^{\circ}$. However, at the hottest period when the temperature reaches 130 degrees, a derating factor of about 11 would apply against the temperature factor, but now the humidity would be at a mirimum end could reasonably be ignored. In this case a totel derating of 115 would be adequate unless the sum of the two factors has been specifically asked for.

It is rerely necessary to celculate derating figures as most engine marufacturers' manuels give this informetion in table form.

When the horse power requirement has been calculated the
project engineer can narrow the field in choosing an engine to suit his needs. It should be remembered at this stage that the power output of an engine is always quoted at a certain speed; the generator frequency requirement will be known and an engine may be selected to turn at either 1,000 or $1,500 \mathrm{rpm}$ for a 50 Hz . supply, or at 1,200 or $1,600 \mathrm{rpm}$ for a 60 Hz . supply. As has been shown in Chapter One, a repeater station will normally use an engine turning at $1,000 \mathrm{rpm}$ while a terminal standby to mains set will normally turn at $1,500 \mathrm{rpm}$. Reference to engine manufacturers' tables will readily indicate what engines are available to produce the required horse power at the required speed.

The many other factors that will be relevant to the eventual choice of an engine will now be considered in detail. Aspiration. Engines will be either normally aspirated or turbocharged. The former relies on the manifold depression for the quantity of air that can be effectively induced at the cylinder. The function of a turbocharger is to increase the power output of an engine by mechanically increasing the emount of air in the cylinder ot the commencement of the compression stroke. When the exhaust gases leave the cylinder at the end of the power stroke they still have a substantial amount of energy; this energy is capable of driving a turbine which is straight coupled
to an impeller. The impeller delivers the air directly to the cylinders.

To quote an example, the Napier Turbo-blower delivers between 11,000 end $19,000 \mathrm{cu}$. ft. of free air per minute, maximum continuous rating, with a nominsl pressure ratio of $1.5: 1$, sea level delivery pressure $7.35 \mathrm{lb} / \mathrm{sq}$. inch at $6,400 \mathrm{rpm}$. This unit comprises a single stege centrifugal blower driven by a single stage axial flow turbine.

Turbo-chargers have been developed to an efficiency capable of carrying out the duel function of evacuating (scavenging) and pressure charging the cylinders of two stroke diesel engines. Yodern turbo-chargers are manufactured in a range of seven sizes to fit engines of 400 up to 4,000 BHP. Por engines of larger capacity, more than one unit may be fitted.

The advantages of turbo-charging mey be summarised as follows:-

1. A substantial increase in output power from a given size of engine or a substantial reduction in the physical size of an engine for a given power output.
2. An appreciable improvement in specific fuel consumption.
3. Lower initial cost.
4. Less maintenance costs with better reliability. Cyclic Variation. The effect of an imprecise or erratic waveform
on modern communications equipment may be very critical; it is, therefore, of the greatest importance that cyclic irregularity be kept to a minimum. Cyclic variation will result from such factors as number of cylinders and number of firing strokes per minute, engine speed and the weight of flywheel fitted to the engine. It is usually expressed as a fraction and indicates the degree by which the flywheel varies from uniform rotery motion and is calculated by subtracting the minimum speed from the meximum speed and dividing the result by the mean speed (taken over one engine cycle.).

Engine manufacturers will provide tables giving this data for their products, it should be ascertained whether their figures include an allowence for generator rotor inertia as this will obviously have an effect also. Engine Cooling. After about 200 horse power capecity the task of deciding between water end eir cooling becomes irrelevant, for the higher power ranges are predominantly water cooled. The choice below that range, however, may be difficult for there are many advantages and disadvantages that merit careful consideration.

Air cooled engines may be somewhat cheaper and lighter although this may not be an important consideration in microwave applications. Generally speaking they may be more easily maintained and dismantling and rebuilding is more quickly and easily
carried out. Apart from what may sometimes be rether cumbersome air ducting they are generally easier to install. The air ducting itself may prove asily adaptable to heating adjacent accommodation by way of shutters controlled by thermostats.

On the debit side it is almost elways necessary to design an engine room specifically for an air cooled engine as many problems can present themselves in regard to obtaining sufficient cooling air. Great care has to be taken also to ensure that hot air is not recirculated giving rise to overheating problems.

Water cooled engines are initially more expensive and carry the additional burden of expensive radiators or heat exchangers and piping. They require considerably more effort to install but can be installed readily in existing buildings due to the greater ease of piping water over long distances. The waste heat may be more easily used for secondary purposes then in air cooled engines.

A water cooled engine lends itself more readily to being kept warm during rest periods as immersion heaters may easily be installed in its cooling system.

Some installations employing water cooled engines may have engine mounted radiators. Although this type makes a

neat package in itself, the problems of ducting the hot air away from the radiator become great unless careful consideration is given to it at the design stage.

Water cooled engines require the addition of anti-freeze despite the fact that they may be located in heated buildings and have the additional security of immersion heaters. Lubricating $0 i l$ Systems. It is essential that engines thet are to remain unattended for extended periods of time have additional lubricating oil capacity provided. The reasons are to allow for normal oil consumption, to cut down on the percentage contamination in the ofl and to provide a means of heat dissipation. These ends may be achieved in various ways, the more popular being by extended running tank, by Make-Up tank or by dry sump lubrication.

The extended running oil tank is normelly fitted on to an extension of the engine bedplate and comprises a steel oil tank of about double the normal engine capacity. It is connected to the engine sump by two pipes, the larger of which enters the sump immediately below the duct to the lubricating oil pump. In practice, the pump draws oil in equel quantities both from the sump and from the tank. The second pipe acts as a level balancer to ensure that the levels are maintained constantly equal. In effect, the engine has three times its normel

capacity of oil in circuletion. Although appearing somewhat primitive this system hes been successfully employed on many large systems without fpult.

An oil Make-Up tenk may be instelled enywhere in relation to thr engine and thus hes the adventage that it does not interfere with accessibility. It employs a regulator valve thet mainteins the engine oil level at a constant height, the regulator valve itself being located in line with the sump oil level. The valve is fed from a reservoir tenk which may be wall mounted ahove the valve. Two pipes are fitted between the velve and the engire, one to provide a supply line, the other to equelise the pressure difference thet exists between the two. Altrough this system does not increase the effective quentity of oil in circulation it does keep down the percentage contamination as fresh oil is constently being added to the sump, it thus permits full time between oil changes. It is not uncommon to use a combination of this and the previous system by conrecting a meke up valve to the extended running tank and, in doing so, considerably increasing the time periods between ofl changes.

Dry sump lubrication is commonly used on all types of engines except those employing eny form of splesh lubrication. The actual oil reservoir - or dry sump tank - is located

remotely from the engine and connected to it by three pipes a feed pipe, a return pipe and a pressure balance or vent pipe. Oil is drawn continuously from the reservoir tank by the engines own oil pump and circulated through the engine in the normal way. A second and lerger pump returns the oil from the engine sump to the reservoir tank. The third pipe which is of smaller diameter is run overhead to balence out any unequal pressures between the engine and tank. This system provides excellent cooling for the oil end, as the reservoir does not need to be restricted in size, extremely long periods between oil changes. Exhoust Systems. Although an exhaust system may appear to be a rather insignificant part of the project it does have an important function to serve and its design requires careful thought. The essential function of en exhaust pipe is to clear the exhaust gases from the engine quickly and efficiently without causing back pressure. In addition, the gases should be cleared in such a way that they do not create any form of hazard. The prime essentials are to keep the run as short as possible and to use the minimum of bends. Hand-made 'sweep' or slow bends should be used to prevent turbulence in the piping.

As clean unobstructed exhaust pipes are a pre-requisite of an efficient ergine, adequate flange couplings should be provided to allow the system to be easily dismantled for cleaning. Exhaust
silencers should be fitted as close to the engine as possible end all piping within the engire room suitably lagped with asbestos cord. Horizontel pipe runs should slope away from the engine to allow condensation to drain off to the outlet.

An exheust run of over thirty feet should be increased in size to prevent back pressure, a geod rule of thumb method is to double the erea of the pipe for every ten feet after the first thirty feet.

Bxheust pipes should be adeouetely insulated where they pess through wrils both to prevent heet fre vibretion from ceusing demage. Tipes pessing through wooden wells should heve air gaps of et lesst four irches.

Under no circumsterces should rigid exheust pipes be screwed directly into en engine manifold. A flexible connecting piece of at least three feet in length should be used at ell times. This flexible should never be expected to cerry the weipht of ary part of the run.

The problems of noise, smoke emission and spark arresting may be overcome by terminating the exheust run in a suiteble 'pround silencer' or exparsion chember. These may be designed in a veriety of ways but in its simplest form would consist of a cement or brick lined hole in the fround into which the exheust

TYPICAL GROUND SILENCER
EXPANSION CHAMBER.
pipe is terminated. Baffles may be introduced to increase the effective length to the outlet slot and a quantity of water put into the bottom to arrest sparks and soot.

Perhaps the last word on exhaust systems is still operating undetected in a large city in South America and, hopefully, as yet not offending National pride in any way.

I wes confronted with the problem of installing an exhaust sytem from a basement engine room in a ten-storey public building. The location was awkward to say the least and it seemed the only way out would be via a devious horizontal pipe run terminating in an expensive and time consuming vertical shaft - if it could be done at all.

Then I discovered the Nationel flag-pole standing serenely on its ornate cement base and proudly guarding the front entrance steps - within only a few feet of the engine room. Some rapid and ingenious civil works - executed while the President and his entourage were away on a state visit to Cuba - soon converted the ornate bese into a ground expansion chember and the steel flagpole itself into a rising outlet! I left the country still hoping that a power failure would never coincide with a couple of faulty injectors during a State Trooping of the Colours!

Puel Storage and Supply Pacilities. There are two main methods of storing fuel in bulk - underground storage tanks and those
that are supported above ground level and employ gravity as their feed to the engine day service tenk. Both have merits which should be carefully considered.

Underground storage tanks afford a certain degree of protection to their contents, in tropical conditions the fuel is protected from high temperatures that accelerate age oxidetion and in extreme cold it is protected from waxing. Transfer pumps ere required to trensfer the fuel to the engine day tanks but the need for a pump on the refuelling tanker is eliminated.

It is good practice to provide bulkheads in the mein storage tank to maintain the independent requirement of each engine. Should a serious leak develop in one supply the fuel could drain away leaving the remaining engine or engines unaffected.

The illustration shows a typical system in which an underground storage tank suvolies two daily service tanks via automatic float controlled trensfer pumps. Service tanks are normally designed to contain sufficient fuel for a 24 hours period. The following facilities are provided on the service tank:- A float level switch to control the pump; a contents gauge with contacts for low-level alarm; in inlet from the fuel pump and outlets for overflow return to the storage tank and supply to the engine filter; a union to accept leak-off

LEAK OFF RETURN
SUPPLY FROM BULK STORAGE |||

GRAVITY FEED FUEL SYSTEM WITH BULK TRANSFER
from the fuel injectors; a drain tap and a large inspection cover. A good quality bress stopcock should be provided in the supply to the engine filter. The overflow pipe should be of sufficient capecity to prevent build-up if the pump level switch fails to operate. At least one filter should be fitted between bulk storage tank and the transfer pump inlet.

An alternative to this system which employs a gravity feed supported bulk storage tank is illustrated and it will be seen that the level of fuel in the service tank rising vent pipe will equal the level in bulk tank. The combined fuel leak-off from the injectors and the engine fuel filter bleed pipe terminate in the rising vent at a height above the maximum fuel level. This system may be compartmented as in the previous example to allow independent supply for each engine.

It should be remembered that a chemical action takes place between fuel oil and galvanised fittings, all fittings and tanks therefore should be either plain steel or of non-ferrous metal.

The bulk storage tank itself should be provided with an inspection cover large enough to permit entry for cleaning. The inspection cover may be used to house the main rising vent pipe (ard fly trap) and a suitable waterproof plug for a dipstick. The bottom of the tank should have a sediment bowl at its lowest point where foreign matter may accumulate for drawing off. The

sediment bowl, or trap, should not be located directly below the filler hole where the incoming flush of fuel will stir up and spread the sediment.

Cooling Systems. If it has been decided that the cooling medium for the engine will be water there are several variations and systems that may be employed. Assuming that the engine mounted radiator type has been eliminated for reasons Blready put forward, we can consider the alternatives of airblast cooler or heat exchanger.

An air-blast cooler is literelly a remotely mounted radiator but with the provision of an electric motor driven fan to provide the air flow through the cooling tubes. The unit is commonly fitted into an outside wall of the engine room with the fan arranged to draw air from the engine room itself suitable louvres and vents being located to supply sufficient Eir. Such air inlets should be adequately fitted with filters to prevent dust from being drawn into the engine room, they should also be sufficient to ensure that the engine is never starved of air.

The unit would be connected to the engine in the same way as a conventional radiator via steel pipes and rubber flexible connections.

As an additional refinement the header tank may be connected

This page is intentionally left blank
to an overhead gravity feed make-up tank to make good water losses. This system has the advantage that the unit is not affected by engine vibration and in no way does it impede accessibility. It may be mounted completely outside the engine room and will work efficiently even when located a considerable distance away. Care should always be exercised when designing the system to ensure that a slope of about one eighth of an inch to the foot is maintained up and towards the header tank to prevent air locks.

Cooling by heat exchanger is not likely to be considered except for the higher horse power ranges and where en adequete supply of raw water is aveilable. It allows for a closed circuit cooling system and has the advantage that little or no scaling will occur in the water jacket of the engine. Circulation both through the heat exchanger and engine cooling system is by pump and valves controlled by thermostats.

If air cooled engines are to be used very careful attention should be paid to the engine manufacturer's recommendations in regard to size of ducting and restrictions in length.

Approximately one third of the fuel burnt in an air cooled diesel engine is converted into beat thet must be ducted away and it is imperative that none of the heated eir is allowed to recirculate through the cooling system. It follows, therefore,

```
that the cooling and combustion air inlet temperatures should
be as near to ambient temperatures as possible. In order to
achieve this, cooling air inlets must be provided in the engine
room in at least the following places:- One inlet near the
bottom of the engine room to provide airflow past the sump;
one inlet close to the air filter to provide a good supply of
combustion air and one or two inlets above the engine and close
to the ceiling to prevent a build-up of hot air at the top of
the engine room. The engine room should be designed bearing
In mind that the whole of the space is subject to air currents
with no still areas where temperatures could gradually build up.
    Steel outlet ducting should be connected to the engine by
flexible edapters which permit the engine to move without
restriction on its mountings.
    Where the outlet ducting terminates outside the building a
cowl should be fitted. The discharge face of the cowl should
be vertical and fitted with louvres or a grill - the cross
sectional area of which, should be 25% greater than the area of
ducting.
Additional Equipment and Fittings. Many additional components
or fittings will be recuired on an engine that is to operate from
an automatic control circuit for extended and unattended periods
of time. Some means will have to be provided to start and stop
```

the engine, special sensing devices will be required to initiate alarm sequences for shutdown and many devices fitted to carry out the function of an operator.

Automatic Run Solonoids. There are two basic types of solenoids in use for controlling engine running and stopping, both being operated electrically from the control panel. A 'Run' (or fail safe) solenoid is arranged to draw the fuel pump rack of the diesel engine into the starting position at the same time as the engine is cranked for starting. It will remain in position until its circuit is de-energised thus allowing the rack to return to its 'off' or stopping position to shut down the engine. If an electrical fault occurs, or the run solenoid itself develops a fault, the engine will shut down under the influence of its fuel pump rack return spring. A run solenoid may comprise two separate coils, on operating coil and a hold-on coil, as far less current is required to hold the armature in the reised position. The operating coil would be arranged to de-energise after initial operation by a trip contact actuated by the armature.

A 'stop' selonoid is fitted in such a way that it draws the fuel pump rack to the 'off' position when energised. When de-energised, the rack would rest in the start position thus ellowing the engine to start and run under the influence of
cranking only. Energisation of the solenoid would be for a short timed period of sufficient duration to permit the engine to run down and come to rest. In the event of a fault developing in the control circuit or solenoid no shut down would take place.

Centrifugal Switches. A centrifugal switch, which may be either gear or belt driven from an auxiliary pulley, normally hes two micro switches which can be independantly adjusted. The low speed switch is set to operete es the engine runs up to speed and is normslly connected to a slave relay in the control panel that disconnects the starter motor circuit. The high speed switch is normrlly set ebout $2 \frac{1}{2} \%$ above nominal engine speed and serves to initiete an overspeed shutdown alarm circuit.

A more sophisticated type of centrifugal switch mey have an additional cortact set to operate at $2 \frac{1}{2} \%$ below nominal speed to initiate en under speed alarm circuit. Nost modern control panels however, have an electronic sensing unit to detect over ard under frequency which may be used in combination with - or in addition to - the centrifugal switch. Battery Charge Dynamo or Alternator. It is not usuel to equip the type of engine to which we are referring with rotating battery chorge equipment. Instead, the control panel normally
houses a static battery charger.
Engine Starting Fecilities. Almost all diesel engines for microweve work employ axiel type starter motors, on the larger engires two may be fitted - one on either side of the flywheel, End in this cese both would operate together.

An axial starter motor has two actions, the first because of the high inertia of the flywheel - is to move the pinion forward into engagement with the sterter ring before full torque is applied. A small initial current is passed through euxiliary field windings to impart a slow turning motion to the ermeture, the same ection moves the armature shaft end starting pinion forward towards the flywheel. At the end of its travel, and when the pinion is fully engaged, a trip mechanism allows the mein contactor to make and apply full current to the field windings and maximum torque is applied to crank the engine. The main contactor cannot make unless the armoture has travelled to its full engegement thus preventing the brass teeth of the pinion from spinning and damaging themselves ageinst the starter ring. This type of starter has an overload clutch which protects the pinion teeth under excessive load.

Cold Starting Aids. One of the greater virtues of the diesel engine is its ability to start from cold end assume full load
conditions within a matter of seconds. Not withstanding this, there is no doubt that some means of assisting the process is beneficial.

Water jacket immersion heaters and thermostats may be fitted in the engine cooling system to ensure that the cooling weter is maintained above embient temperature. Similar heaters may elso be fitted in the oil sump of air cooled engines but these should operate at a low surface temperature to avoid carbonising the oil. (Where such devices are fitted, adequate indication should be posted to ensure that they are isolated by maintenance personnel before oil and water are drained from the engines).

Under really adverse conditions of cold, it is possible to introduce a finely atomised spray of highly volatile spirit into the induction menifold to assist with the first few firing strokes of the engine. Such sprays mey be from an aerosol-cen actuated by an electric soleneid in conjunction with the start circuit. Such \& device should only be used under well controlled conditions, for the introduction of too much spirit into the engine could give rise to excessive loadings with possible disastrous results.

Having accepted that the diesel will assume full load corditions within a few seconds of starting from rest, it becomes very apparent that the lubricating oil pump should be highly
efficient in order thet all moving perts are adequately lubricated. In order to achieve this, an auxiliary oil priming pump driven by an electric motor may be included in the lubricating system. The pump would be timed to start and pressurise the engine lubricating system for a given period perhaps twice every twenty-four hours - thus ensuring that the oilways end bearings were meintained cherged with oil. The actuel duration and intervels would depend upon the conditions. Manual facilities for running the pump would be fitted in order that priming could be effected before test rurning the engine. Anti-Vibration Mounts. Where heavy reciprocating engines are installed, vibrations may be transmitted which might have an unpleasant influence on adjacent equipment. Various types of anti-vibration devices cen be instelled to minimise these effects. Rubber or spring type mountings may be used to support the engine and generator assembly. The mountings may be adjustable by means of a screw end locknut and have additional srubbing and damping devices to take up the extra movement of starting and stopping when deflection is at its highest. Scientific selection of the correct type of mountings will dispense with the necessity for a heavy cement foundation block and make possible the installation of equipment on quite light structures such as suspended reinforced floors.

In cases where the need to eliminate vibration is essential, an isolated cement foundetion block mey be installed in addition to anti-vibration mounts. Such a block, which should be equel in size to the manufacturer's recommendation for an unmounted engine, would be separated from the floor structure by a wall or lining of thick sheet cork. The gap between the block and the floor should be filled with sealing compound to prevent oil and fuel from seeping into the lining. If necessary, the complete engine room floor mey be isolated in this way, alweys providing, of course, that it is not required to run underground pipes or conduits to the plant.

Engine Air Cleaners. Under reasonable operating conditions air cleaners could be an ordinary oil bath industrial pattern. For conditions where the atmosphere is likely to be contaminated with dust or polluted in any way, a 3 stage heavy duty oil bath air cleaner should be fitted.
$0 i l$ and Fuel Pilters. Oil filters should be full flow type for meximum efficiency. Fuel filters should be of the dual type with provision for chengeover without affecting normal service. An additional filter should be provided between the bulk storage tank and transfer pump with a combined water separator and sedimentation trap.

Oil Coolers. If oil coolers are required, they are normally
fitted by the engine manufacturer as an integral part of his equipment. If any doubt should exist, however, the manufacturer will readily supply details and recommendations. Engine Protection Devices. Although various types of selfactuating devices are available to shut down the engine in event of trouble developing we are less concerned with these in regard to microwave equipment. We will turn our attention then to what are more easily defined as sensing units, which transmit a fault signal to the mein control panel. From this signel a sequence of events is initiated which will shut down the faulty set and start up itts standby, isolate the faulty set from duty and give local and remote indication of the condition. Local indicetion of the fault may be by both visual and audible alerm.

Low 0il Pressure. This is normally a bellows or diaphragm assembly which is pressurised by the engine lubrication system. When oil pressure is normel it acts on the bellows or diaphragm and extends it to operate a contact. The contact is connected to a slave reley in the control penel. If the oil pressure drops below a predetermined value the contact closes and initiates an alarm condition. Cooling Temperature High. Cooling temperature is normelly monitered by a bulb and capilliary tube unit. In the event of the
engine temperature rising to an undesirable level the column of mercury expends and actuates a contact which, upon closing, will transmit the condition to a sleve reley. The same system is used both for water snd air cooled engines. Radiator Pan Belt Breakage. Although not often seen, this facility has been used in the past and is worthy of mention. It consists of a smell idler pulley that rides on the engine fan belt. If the fan belt breaks - or becomes too slack - the pulley moves out of position and trips a microswitch which, in turn, transmits the condition to a slave relay. This facility does have value on a radiator cooled engine as it will give warning and isolate the set before an undesirable high temperature is reached.

Engine Pail to Stert. The circuit that provides a timed period for engine starting is part of the control panel equipment. The circuit however, may include a 'three attempt' start device that allows the starter motor three tries to engage with the flywheel starter ring. Manufacturers of axial starter motors do not guarantee that the starter pinion will engage first time although, in practice, they are highly efficient. In order to allow for the predicted failure to engege a small timing device is incorporated - sometimes as an integral part of the starter motor that will permit the armature to return from the blocked position

```
    twice after the initial attempt before signelling a fail to
start alarm.
```

Overspeed Shutdown. An interesting device to protect en engine in the presence of flamable gases has recently been developed by scientists from Esso Petroleum. Although this type of hazard is not likely to be met in the type of installation we are considering, it is worthy of note as a protection device. If flamable gases are present in an engire room they mey be ingested vis the induction system into the cylinders. If this happens, the gas can act as an addition to the normal fuel supply and cause the engine to speed up with possibly disastrous consequences.

The protection device comprises a spring loaded poppet valve, fitted up-stream of the induction menifold. This velve, which can be critically adjusted to ellow the engine to run at its normal governed speed, will snap shut if the speed increases beyond a predetermined point thus bringing the engine to rest by starving its air supply.

Engine Instrumentation. A minimum of instrumentation is required to indicate prevalent engine functions end should include the following:-

Tachometer and Hour Recorder. An average engine tachometer is not a very precise instrument and is often omitted on the grounds that

[^0]
Chapter Three.

THE NOBREAK SET.

Fundamentally, a Nobreak system is one that utilises some form of stored energy that is capable of supplying the load until a reserve form of power can be brought into operation. The important proviso is that absolutely no interruption between supply and load should occur. This stored energy is, in practice, normally stored in a flywheel as kinetic energy or in a battery as chemical energy.

For the purpose of this study, we will confine our examination of Nobreak sets solely to those types that employ a diesel engine as a direct form of motive power.

Three Machine Nobreak Set. This system consists of a diesel engine connected through a clutch to a motor - flywheel - alternator set combination. The electric motor is driven by the public mains supply (or a diesel generator set in the case of a repeater station) which, in turn, drives a flywheel which, in turn, is coupled to an alternator. The alternator supplies the essential load at all times. If the supply to the electric motor fails, the kinetic energy stored in the flywheel drives the alternator until the diesel engine is clutched in and run up to speed. This state of
MACNETIC CLUTCH
ALTERNATOR
고รヨ1ロ
WITH STANDBY
SET
NO-BREAK
affairs would continue until the main supply restored itself within acceptable limits and resumed the drive to the motor. At this time, the diesel would de-clutch itself and return to standby duty. It will be seen that with this system, a continuous supply of un-interrupted power is available for the essential load; the supply showing no appreciable variation in voltage and only a slight frequency drop during the start cycle for the engine. The clutch used on such a system is normally electromagnetic and arranged to cut in when the diesel engine has attained a percentage of nominal speed.

The diesel engine itself would be built on identical lines to those described under standby to mains sets and would have similar protection devices.

Three Machine Nobreak Set with Additional Standby Diesel. This arrangement would be similar to that described above but with the addition of en extra engine connected electrically to the drive motor. This engine would start end assume the drive to the motor in the event of a fault developing in the first set or in the electro-mechenicel drive.

Two Machine Nobreak Set. A two machine Nobreak set consists of a motor flywheel elternator assembly which is connected electrically to one or more standby diesel generstors. The motor is driven by the public supply until, in the event of a power failure,

the standby set/s rur up to speed and assume the drive. When two or more stendby ergires are employed on such a system all may be started simultaneously and the first up to rominal speed erd output will pick up the Nobreak set and lock out the others which will revert to stancby duty.

Bettery Neintaired Nobreak Sets. These systems employ large banks of batteries to feed the essential load via inverters. The batteries float fully charged on the mains electricity supply. In the event of a feilure in the mains supply the batteries contirue to feed the essential load inverters while a standby diesel engine starts up and assumes the supply to the battery charger.

Three Diesel Generator Sets arranged for Nobreak Operstion on a Common Busbar. This uses the principle of meintaining generating capecity surplus to essential load reouirements to the extent thet one ergine cen shut down without endengering the supply to the total essential load. In this cese, two sets would supply the busber continuously and one set would remain at rest. The total essentiel load should not exceed the continuous output of one set elone, but non-essential load up to the capacity of the second set may be added if fast acting relays are provided to dump this load if the capacity of the busbar drops by one set shutting down.

Four Mechine Nobreak Set with Two Diesels. This type of Nobreak equipment consists of a standard three machine Nobreak set with the addition of en extra diesel engine and clutch connfeted et the alternator end. In effect, the diesel engines operate es dual duty cycling sets, alternating the drive at predetermined time clock intervsls.

The foregoing gives a fairly broad outline of what is available in Nobreak equipment. Variations and combinations of the various types are abundant and would require a complete work to describe in deteil. Suffice it to say that each microwave system hes its own peculiarities and requires its own specific design.

There is a general trend towards less power requirements as trensistorisation takes place and it is likely that, in the future, the mechenicel Nobreak will give way entirely to the smeller type of D.C. Static Nobreak system.

ALTERNATIVE FORMS OF POWER

Despite the supreme position thet the diesel engine has attained and held for so long in the field of microvave engineering, what are its prospects for the future? Let us first corsider its edvantages:-

It is relatively efficient and extremely reliable.
It is easy to maintain.
It starts well and will continue to run under adverse conditions.
It does not emit toxic fumes (es does the petrol engine) and its fuel is not a serious fire hazard. Fuel costs are relatively cheap and long periods may be expected between major overhauls.

It can assume full loed conditions from cold.

Against these advantages, we should consider the following:It has a poor power to weight ratio.

Its initial cost is high.
It is noisy and trensmits vibration.
It requires skilled personnel to attend to maintenance and overhaul problems.

[^1]reliable designs could now be developed "
The above quotation has been taken from an article by P. A. Sachs in Point to Point, deted Februery 1964.

Historically speaking, wind power has established itself well - especielly in the domestic field. In the field of telecommunications a wind powered generator is reported as having successfully provided power for a 10 cm . television link - giving three troublefree years of service. The initial power demand had been calculated to be $26 \mathrm{Kwh} / \mathrm{day}$ but in the firgt winter the diesel standby generator immersion heaters consumed $24 \mathrm{Kwh} / \mathrm{day}$ to prevent the engine from freezing up. The system comprised two 6 Kw wind generstors supplying $50 \mathrm{Kwh} / \mathrm{dey}$ deily with the minor problem of overcharging being the only reel trouble encountered. In a recorded one year period these sets provided 13.3 Wwh with a maximum outage time of only 24 deys due to blade icing.

The capital cost of a wind generating system would be less than the cost of the smellest possible diesel set - excluding running and maintenance costs.

The advent of solid state devices has done much to lower the power requirements of repeater stetions - e solid state two-way 60 channel repeater for example, would require a supply of only 5 amps, at 28 volts DC. a power of 140 watts. A similar station employing valve circuitry would demend a supply of 1 Kw . AC.

Solid state equipment then, would require far less spece conceivpably in a weatherproof housing which could be mounted on the wind generator tower alongside the weatherproof battery container. The economics of such a system appear extremely attractive as the need for a building proper would be eliminated completely. Such a system would require a high degree of reliability and it should not appear unreasonable to specify maintenance visits at yearly intervals.

The principle of operation is relatively simple, it being required thet the motive unit tunes itself to a random input force - the wind - by means of a hydraulic servo-mechanism and centrifugel governor. In addition, a gearbox would be required to adjust the input speed to the generator and regulator.

Commercial machines favour the medium or high velocities of
wind - starting to rotate at $7-10 \mathrm{mph}$, reaching their rated output at $20-30 \mathrm{mph}$ and furling their blades at 60 mph .

To satisfy the requirements of a radio relay system calling for a small trickle charge into the batteries - not maximum power - e more suitable machine would start to operate at about 4 mph and reach its peak at $15-20 \mathrm{mph}$.

Wind speed, taken as a mean average, does not vary to any great extent from year to year. Over a period of 31 recorded years on 31 United States Weather Stations, it was found that the
long term average did not fall below $12 \frac{1}{2} \%$ of the annual mean speeds.

With the world facing a potential fuel shortage in the not too distant future, it seems likely thet wind power will begin to be exploited to a much lerger degree.

A great deel of research has been carried out with fuel cells as a form of energy producer, indeed, recent excursions into space would have been seriously handicapped without them. It is interesting to note thet Genersl Electric fuel cells marked the first practical use of this new form of power aboard Gemini 5 and Gemini 7 spacecraft.

Fuel cells are silent, vibrationless and give rise to no exhaust fumes. They are extremely efficient and require no recharging as we understand it and will operate as long as the basic reactants - oxygen end hydrogen - are supplied. The hydrogen may be generated in an apparatus attached to the fuel cell itself. In an ion-exchenge membrane cell the required oxygen can be derived directly from the air. Other types operate directly on low cost hydrocarbons such es propane or liquid fuels.

The fuel cell is basically an energy conversion device in which chemical energy is converted isothermelly into direct current
electricity. In the hydrocarbon/air fuel cell the hydrocarbon is first converted into hydrogen which is then oxidised at the enode or fuel electrode. The resulting flow of electrons, which is collected by the anode, is transferred to the external circuit, thus making up the electric current of the cell. After doing useful work in the external circuit, the electrons are consumed at the air electrode or cathode in a reaction utilising the free oxygen in the eir.

The performence of a fuel cell is measured by the following: The current density at which it operates, the voltage, the Kw per pound and per cubic foot and the weight of any ancillary equipment required to operate it.

Solar energy is another form of energy that may find a useful application in the field of microwave engineering, always providing that the cost of harnessing it can be brought into realistic proportions.

A great amount of heat and energy is given off by the sun and mey be usefully tranped in what are known as Solar Collectors. These collectors are not energy systems in themselves, for they do not convert heat directly into power; but they do provide the heat that may be converted into the production of energy of some other
form.

The collectors themselves are divided into two bssic types - the flat plate type which is a low temperature device not too well suited for energy conversion - or the concentrator type.

The concentrator type is somewhat more elaborate for it requires special tracking equipment to follow the sun's orbit and concentrate its rays on to a given point. It is capable of producing temperatures up to 3,500 degrees centigrade, which may be used for powering steam turbines, vapour turbines or thermo-electric generators.

ENGINE ROOM DESIGN.

In order to obtain a high degree of reliability and efficient running of, the engine room and the layout of the equipment require very careful consideration. The diesel engine and associated generator and control equipment will have been designed and built to the very highest standards, despite this end the exacting inspection and testing it will have had in the factory it carnot be expected to work satisfactorily unless the same care and attention is given to its installetion. There are indeed, some very abortive attempts at installation in existence and the subsequent failure of the equipment to function correctly with any degree of reliability and efficiency is more often than not attributed to the manufacturer of the equipment itself. As a result, perhaps, the manufacturer has increasingly begun to insist that his own trained personnel should be contracted to install and commission the equipment.

Basic economy should never be a prime consideration when designing on engine room. The author has had the dubious pleasure of servicing a $1 \frac{1}{2} \mathrm{Kw}$ generating set installed in an
ebandoned privy where no door existed and the roof lesked consistently; it wes impossible to resch most of the servicing points and, es a result, meinterence was only carried out with the utmost difficulty. On enother occasion, I wes involved with e 24 hour commsisioning run on a 500 Kw standby to msins set in the basement of a large Iondon Berk. On this occesion the engine, generstor end control panel had literally been 'stuffed' into a room that wes hopelessly insdecuate in size and locetion. Eleborete and compliceted errongements were celled for to pipe the cooling water to an outside redietor end the exheust system had to be seen to be belfeved. This wes a fine exomple of lack of thought and foresight in the initisl stages.

The moral then, to designing an ergine room, is to heve edeouste spece while meking use of es smell ares as Doseible. Porturately, with the type of eouipment we are discussing, the project engineer wity more often then not be esked to design en engire room to suit the proposed eauipment.

The interrel तimensions of the engine room will depend upon the physicni size of the ecuipment plus en sllowfnce to permit (B) meintenence to be cerried out effectively on each piece o: ecuipment, end (b) ony niece of eouipent tc se removed or rcrisced without interfering with rorm" operation.

At least two feet six inches should be ellowed between each engine and the piece of equipment nearest to it - the physical size of an engine being defined as the distence between its mat extreme points. Lengthweys this will normally be from the guerd over the crenkshaft extension to the furthest poirt on the generator: ecross the engine it vill probably be from the side of the eir cleaner on one side to the flywheel guard on the other. The points very accordirg to the type of engine, of course, but the rule of extreme points should always epply. If the diesel generator set is to be located on a raised cement foundetion, which is larger then the extreme measurements of the set, ther these dimensions should be used instead. For exemple, it mey be found on some engines thet additioral space is required during msjor overhaul work, e.g. if the crenksheft cen only be removed lengthwise from the front of the engine, the length of the crankshaft will have to be taken into account tot the design stage, and added on to the normal allowance. If air cooled engines are beirg used, the eir outlet ducting should be kept as short as possible to avoid having to ircrease its cross-sectional eree. Fuel and oil tanks then, should not be nleced in e position thet forces the engire further than necessery from the well through which this ducting will pass. The dey running fuel service tenks end exterded running oil
tenks may eesily be mounted on twin racks - one adjacent to each enfire - to meke a neat end functional errergement; this may have further advantages in thet the fue? and oil suprly lines may be run in the seme trenches and eid economy both in time and labour. If the tank racks ere mounted either side of the engines the width of the tenks plus the width of the engines plus the calculated ellowence vill give the effective width of the engine room.

The length of the ergine room will be decided upon in a similer wey, however, it may be considered worthwhile to ellow clearance from the sterting handle when it is in position rather than from the normel extreme point of the engine. Although it will hardly ever be called upon to crank the engine for starting, it is elmost indispensable for maintenance work.

The control panel should be installed in such ε position that ell the equipment controlled by it may be easily seen by the operetor - probably the effective position is with the facia at right angles to the engines. The length of the engine and control parel plus the required rllowances now give the total length of the ergine room. Before drawing up a plan, a careful check of the dimensions should be made to ensure thet there is edequete space to menơuvre ench ergine should it be required to remove one at eny time for mejor overhaul.

The height of the engine room will depend on the height of the engine when mounted, plus a minimum sllowence for gravity feed between the dey service tank end the engine filter plus the height of the $t=n k$, plus a minimum of one foot clearance between the top of the tank and the ceiling. As o generel guide, e minimum of two feet six inches should be sllowed for the grevity feed head. A calculetion besed on the foregoing figures should give adequate space for the exhaust pipe vertical run and the rising hot air ducting - if it does not, then a further dimension will have to be celculated with this information in mind. In situations concerning the larger types of engines it may be necessary to make allowance for withdrewing a piston/connecting rod assembly. It might further be required to instsil a lifting tackle above the engine and in this case, the effective height must be considered to be at the lowest point of the lifting tackle.

The desion engineer may be esked to locate a work bench and spare perts cupboard in the engine room and, if this cannot be avoided, extra space will have to be made available to accommodate them. An effort should be mede to locate workspace and tools elsewhere on the grounds that an engine room is an ergine room and not a workshop.

It would be impossible to design e perfect engine room layout
due to the large amount of variations of types of equipment and most desigrs ore a compronise between experience and necessity. Let us look at some problens end see why and how they mey be overcome in certain ways.

Arrangements for air cooled engines heve been discussed in an earlier chepter and it wes seen that enfine menufacturers ley down adequate details on how to provide and exhaust cooling air in order to keep the engine running at an optimum temperature. Despite this it is not unusual to encounter problems not the least of which is to find an exhaust pipe discharging sooty smoke adjacent to a cooling air inlet grill. It requires Iittle imagination to reslise that 90% of the soot will be drawn into the engine cooling ducts and evertuelly block them up.

Although most desigrers seem to build ducts that run out horizontally somn very successful vertical outlets exist. They heve the adventage of eliminsting bends and offering a shorter run, they also meke for e much neater instrllation. With careful planring and workmenship the problems of rainwater seepage through the roof join should not exist at all. Perhaps most problems with ducting arise from the flexible conrection between the engine and the rising section; this should always be of strong cenvas held securely in position with strong metal clamping strips. At lesst six inches should be allowed between the two ducts to take
up ongine vibrations and sterting and stopping movement.
The control panel is placed at right engles to the equipment to allow the operator to carry out switching procedures while being able to observe the sets without 'craning' his neck. It may be argued thet it is difficult to see the panel meters while carrying out adjustments on the sets themselves; however, in reality, this will seldom be necessary for portable instruments such as tachometers and voltmeters will no doubt be used at such times. With the tendency to miniaturisation, control panels are becoming smaller and the console type is coming into being. With this innovetion the operator may face both the panel facia and the engine equipment at the same time

- much essconductor faces his orchestra, from above a music stand. It is not unusual to find an additional panel for the purpose of isolating the main control panel for maintenance purposes. If this is the case, the same must hold good - that it be located intelligently and in such a position that it may easily and readily be operated.

Power cables and control wiring may be laid between equipment and control panels in a variety of different ways which include cable racking or ladders, floor trenches, metal trunking and/or conduits. Each system may be used in combination and it is worthwhile to examine the merits of each method.

Cable racking is normplly run overhead and presents a neat and accessible way of running cable from one point to another. They are easy to install and meintain and may be added to at will. Continuous earth connections should be made between each section and the whole eventually connected to the common station earth. On the debit side, it will be seen that cables supported on racking are relatively unprotected from accidental damage, and, as the racks are run overhead, they may obstruct rising pipes and ducts from the engines.

Metal trunking comprises en open box section in continuous lengths with a tightly fitting lid to enclose the fourth side. Special bends, tee's, outlets and reducers are available which allow for a quick and efficient installation. The result is generally very neat and has the advantage that it may be opened up for inspection and addition very easily. Like racking, it needs to be earth connected. Although not fully self-supporting it is quite rigid and requires little extra material for wall or ceiling supports. Cables enclosed in trunking ere fully protected from accidental damage.

Steel conduits are often built into the floor of an engine room to carry cables from the engines to the control panel. Such installations will probably be laid by the civil building contractor and very careful control is required to ensure that
they are correctly positioned and rise at the right place and at the right angle. It does make for a neat and tidy engine room if done properly, but some very poor attempts are in existence and it should only be employed where reliable contractors and inspectors are available; the problems involved in correcting them after the floor has been laid are obvious. Rigid buried conduit systems are not easily added to, nor is it possible to inspect the cables once they are in position. On long circuituous runs extreme difficulty may be experienced in pulling the cables through. Where such conduits rise from the floor they mey be essily connected to flexibles for connection to a vibrating engine. Rigid conduit systems are excellent when fitted to walls for they are neat, quickly installed and may be converted and added to if required. As with trunking, a great selection of adapters and fittings are aveilable. On exposed conduit runs specisl pulling boxes or inspection fittings are used to assist with drawing the cables.

Floor trenches or channels are frequently used to carry cables from one point to another, they are neat and practical and permit easy access. They generelly take the form of a moulded cement channel the top of which is shouldered to take a chequer plate cover which fits flush with the floor level. In some
ceses, and where absolute protection from flooding by oil or water is essertial, the shoulder may be made deep enough for the cover plate to be lightly cemented in position. In some cases, the type of load mey demend thet A.C and D.C cables be separated to prevent inductive currents from circulating, in such cases rigid conduits may be laid in the trench to separate the wires or, alternatively, separate trenches may be built. It is not unusual to fill floor trenches with dry sand to protect the cables from small rodents and insects.

Where floor trenches or buried conduits are used they will normally terminate in a pit beneath the control where the cables can rise to their respective termination points. The pit should be adequate in size for large diameter cables require a large bending radius. Ary rigid conduits terminating in this pit should have protective nipples to prevent damage to the cable insulation, in addition, ell the conduits should be connected to the station earth.

The choice of what system to employ on a given installation will not be difficult, the type of equipment end its situation will frequently determine the most suitable method to adopt. Some very good combinations may be used, rigid conduit may be run on racking for example and each method will readily convert or adapt to another.

When the diesel generator set is built all the control wiring should terminate in a common connection box on the baseplate. If possible, this box should be located at a point that allows easy connection to whichever of the above systems is used. The same should apply, of course, to fuel and oil pipe connections. These should alweys terminate with a flexible portion which should be long enough to reach to within at least four inches of the floor. (It should be remembered that it is far more practical and economical to carry out such work at the manufacturer's factory then at the instrllation site).

The use of floor trenches (covered in the same way with chequer plate), to carry oil and fuel lines from the engine to the relevant tanks is good practice also. As before, the trenches may be filled with dry send which, in this case, serves the additionsl purpose of insulating the pipes against vibration. Under no circumstances should piping of this sort ever be cemented into the floor. Nor should it be laid on the floor and covered with wooden ramps which are both dangerous and unsightly.

There is no reason why trenches should not carry pipelines below an engine if this offers the shortest and best route, the pipes may be removed if required for there will be adequete svace beneath an engine supported on anti-vibration mounts. Some attempts heve been made in the pest to draw copper fuel line
through buried conduits, this method is doomed to failure and should be avoided at all costs for the tubing work herdens badly on the first bend and takes on a decided oval shape on the second. I was once personslly involved in trying to talk an authority out of adopting this method and, although he failed to be convinced on the grounds stated above, I eventusily won the argument on the possibility of electrolytic action harming the pipes.

An important aspect of design that is frequently overlooked is thet of putting the correct slope on pipework. Pipes have to slope for two reasons: (a) to prevent air locks from forming, and (b) to allow condensation to run off. As a general rule one inch in eight feet is adequate for all pipework. Let us examine fn engine room and see why the slope is required.

Exhaust Pipe Should slope away from the engine to allow condensate to run off.

Water header Pipes (To radiator)

Hot Air Ducting

Fuel Lines

Should slope up and away from the engine to assist hot water rise and to prevent air locks. Should slope down and away from the engine to allow condensate to run off. These are very important and must slope to prevent sir locks. There should never be more then one high point in such a run, i.e. If the
pipe is allowed to sag badly two high points where air locks can form will be created. Wherever possible, the highest point of a fuel run should have a bleed point as at the fuel filter.

011 Feed Pipes Air locks may form just as easily in these as in fuel pipes, they should, therefore, have a suitable slope. Where balance pipes are used - such as to balance pressure between an engine and dry sump tank - extra care should be taken. If no balance of pressure is permitted it is possible for the tank to burst, adequate slope on the bslance pipe is therefore essential.

The engine starter batteries should be located as close to the starter motor as possible to minimise voltage drop and installed in well vertilated, wooden boxes which heve been protected with acid resistent paint.

No discussion of engine room design would be complete without reference to engine room lighting. At least six 100 W . tungsten lamps should be fitted in the engine room - not necessarily where they look prettiest or most symetrical - but where they will illumiate usefully all the different pieces of equipment. Strip lighting
of the type that is synchronised to the supply frequency can be dangerous where rotating equipment is operating, (It cen make the motion appear to be stationary if the frequencies Ere matched), and should not be used under any circumstances. At leest four outlet sockets should be instelled where an inspection lemp cen be plugged in, et least two of these should be adjacent to the engines.

Above all, some form of emergency lighting should be provided. This may well take the form of a simple 24 volt D.C circuit fed from two spare batteries. The batteries, which would be maintained fully charged from a charger incorporated ir the control penel, would serve the dual purpose of being available as rescrve batteries in the event of one set of engine batteries failing.

Plate I.

A tyoical twin repeater station emoloying Lister P.R.2. water cooled engines. The layout of the Air-blast coolers, water make up tanks and day fuel tanks can be seen clearly. One of the automatic fuel transfer pumps can be seen to the right of bottom centre.

Engine room layout, installation and photo by the author.

Location - Quibala, Angola. Power equipment for Marconi V.H.F. system.

Plate 2.

The engine room layout for the installation shown on plate I.

By kind permission Pelapone Engines Itd., Slack lane, Derby.

A twin repeater employing Lister H.A.2. air cooled engines. The oil make up tanks with level control valves are seen against the far wall. The neat appearance of this installation is made possible by the use of underground conduits and floor ducts.

Engine room layout, installation and photo by the author.

Location - Nirgua, Venezuela. Part of a 23 station Microwave radio system by General Telephone and Electronics de Venezuela. Power equipment by Auto Diesels Ltd., Uxbridge, Midclesex.

Plate 4.

A typical triple automatic station. of particular interest are the fully insulated engine foundation blocks. Each one is cast in a cork lined pit and ultimately sealed to prevent the ingress of oil, fuel and water.

Engine room layout, installation and photo by the author.

Location, - Altimira, Venezuela.

Plate 5.

The No-Break set and control panel
at Nirgua repeater station.
The first two panels are similar and afford automatic control and protection to engines one and two respectively.

The third panel provides common control and bye-pass facilities. The last panel provides supervision and auto control for the No-Break equipment.

Installation and photo by the author.

Plate 6.

A triple automatic control panel showing the engine protection and supervisory facilities. A novel feature of this panel is that it forms a dividing wall between the engine room and the adjoining room. The large control switches on the two end panels have locks to prevent operation by unskilled personnel.

Installation and photo by the author.

Location - Altimira, Venezuela.

Plate 6 B.

Back of board view of the Altimira triple automatic control panel with inspection doors removed.

Plate 7.

A triple automatic generating station providing power for defence system communications in S. America.

Engine room layout, installation and photo by the author. Location - Estancia, Southern Chile.

Power equipment designed and built by Dale Electric Ltd., Filey, Yorks.

Plate 8.

A 250 K.V.A. Standby to mains set on the Chilean defence system. This equipment is fully automatic and arranged to start up and assume the load in the event of an out of limit variation in the mains supply.

Engine room layout, installation and photo by the author.

Location - Estrecho, Southern Chile.
Power equipment by Dale Electric Itd.

Plate 9.

A simple manual control panel of the type used to supervise and monitor an attended generating set. This is one of six built by the auther for the Newfoundland and Labrador Power Commission.

Photo, the author.
Location - Port aux Basque, Newfoundland.

Plate 9.B.

```
Interior of the manual engine control
panel shown in plate 9.
```


ACKNOWLEDGEMENTS

It has been my pleasure to heve worked very closely with meny compenies end suppliers of diesel power eouipment in positions renging from installation supervisor to menaging director.

I owe them all a big debt of gretitude for I gained much valuable experience and enjoyed at ell times a very happy association.

I acknowledge then the following:R. A. Lister \& Co., Itd., Dursley, Gloucs. The Merconi Co., Ltd., Chelmsford, Essex. Auto Diesels Ltd., Uxbridge, Kiddlesex. Pelapone, Ltd., Derby. Dele Electric Ltd., Piley, Yorks. Generel Telenhone \& Electronics de Venezuela, Caracas, Venezuela. Testech Newfoundiand Itd., St. John's, Nfld. Federal Pacific Eloctric Ltd., Windsor, Nova Scotia.

I would also acknowledge the following administrations for whom I worked under contract:Correios Telefonos e Telegraficos de Angola. Nigerian Fosts and Telegraphs, Legos, Nigerie. Compenia Annonima National Telefonos de Venezuela.

Newfoundlend Power Commission, St. John's, Nfld.
Newfoundland Light and Power, St. John's, Nfld.
Armadas de Chile, Santiago de Chile.
Maritime Tel. \& Tel., Hallfax, Nova Scotia.
United Stetes Air Force.
Central Electricity Generating Board, U.K.

BIBLIOGRAPHY

Lister Data Book 285
R. A. Lister \& Co., Itd., Dursley, Gloucestershire.

Audels Diesel Engine Manuel
Theo. Audel \& Co. New York.
Hydrocerbon-Air Fuel Cell Systems.
C. Gordon Peattie. (Texes Instruments Ltd).

Developments in Energy Conversion Devices
H. K. Bourne.

Further thoughts on Generating Small Electrical Energies
J. B. Goodacre.

The Selection of Nobreak Fower Systems.
M. A. Thomes end D. E. Holland of M. A. Thomas Associates, Consulting Electrical Engineers, Vancouver, Cenada.

Marconi 'Point to Point'. Feb. 1964, Vol. 8, no. 2.
Article by P. A. Sachs, M.A.
Engineering Magezine. Vol. 212 November 72.
Diesel \& Gas Turbine Progress Magazine. June 1972 and August 1972.
AB Volvo Penta Output Stenderds. Pub. no. 1573B.
Pelapone Ltd., Technical publication 6/64/T2-12.
Marine Diesel Engines, C. C. Pounder. G. Newnes Ltd.

APPENDIX

British Standard Specification 649-1958.
B.S 649-1958 includes diesel engines for all purposes with the exception of ship propulsion.

All mechanically driven auxiliaries required for engine operation are to be included with the exception of the cooling fan in the cese of liquid cooled engines.

Standard Operating Conditions:-
Mean barometric pressure: 749 mm Hg .
Air temperature: 29.4 degrees centigrade. Humidity: 15 mm Hg .

Continuous Output, Rated Output: The net output which the engine is capable of delivering continuously at a stated crankshaft speed under the conditions stated above. The engine must be run-in and in good condition.

Intermittent Output, 1 hour Rating: The engine shell be capable of satisfactorily providing an output 10% in excess of the continuous rating at the same speed for one hour in any period of twelve hours continuous running.

For Derating, B.S. 649:1958 stipulates the following:-
For engines which are normelly aspirated or fitted with mechanically driven pressure chargers, there is to be a derating
of $3 \frac{1}{2} \%$ for every $1,000 \mathrm{ft}$. in altitude over sea level above 500 ft . and for engines which are exhaust turbo-charged the corresponding derating is $2 \frac{1}{2} \%$.

For every incresse in sir inlet temperature of $5 \frac{1}{2}$ degrees C. (42 F.) above 30 degrees $C .(85 \mathrm{~F})$ there is to be a derating of 2% for normally aspirated engines and those fitted with mechanically driven pressure chargers; 3% for enfines which are exhaust turbo-charged and not fitted with a charge air cooler. Should a charge air cooler be fitted, there should be no derating for air temperature but a derating by 3% for every increase of $5 \frac{1}{2} \%$ degrees C. (42 F.) above 24 degrees C. (75 F.) in the temperature of cooling weter at the inlet of the charge air cooler. For derating concerning air humidity see relevant table which shows a highest derating of 13.4% at 100% air humidity and an air temperature of 51.5 degrees C. (125 F.)

[^0]: the control penel will be fitted with a frequency meter. Despite this, it is worth fitting one for the following reasons:-
 (a) It will be found to be most useful when setting up the engine after meintenance work and
 (b) Most tachometers have an integral hours-run recorder. The latter will prove to be an invaluable feature and very desirable for the efficient use of a maintenance schedule.

 Coolant and 011 Temperature Gauges end Oil Pressure Gauge. All three are eoually important for on the spot reference and for long term record use. The values of all three should be carefully entered in the engine \log book when maintenance is carried out. Exhaust Temperature Gauges. These are less common on microwave systems but will occesionally be secn on the larger range of engines. If fitted, a careful record of their velues should be kept in the engine log book.

 Engine Bedplate. The engine generator assembly is mounted upon a common fabricated bedplate to create one complete unit, this would follow whether the direct coupling employed was by flexible drive coupling or by flange mounted alternator. Such bedplates should be suitably stress relieved after fabrication and all support surfaces machined true with provision for locating dowels to ensure correct alignment.

[^1]: These cre only general terms for it may well be argued that its advantages are not as meritorious as they appear at first sight and that its disadvantages are not as bad as they seem.

 Perhaps it has held a rather unique position for its only serious contenders have been the petrol engine and the gas turbine. The petrol engine would fail miserably on its poor starting characteristics and fire risk. The gas turbine may offer some opposition in the higher horse power ranges but even at high speed on full load it has a lower efficiency than the diesel.

 Perhaps it will be the evolution of the microwave system itself that will evertually render the diesel engine a less favourable proposition than alternative power sources. The greatest influence will be ${ }_{A}$ actual amount of power required.

 Let us examine some of these elternatives. " The power consumption of a solid state repeater for a low capacity radio relay system is so low thet it could be supplied by storage batteries charged by a small wind generator, provided that the wind characteristics of the site are satisfactory. Suitable sites, where the annual mean wind speeds exceed 8 mph will be found in almost all coastal belts and on many inland hills and ridges. Wind generators for this purpose are not commercielly available at present but the author believes that

